
ID—A049 475 TRW D€FEIISE AM) SPACE SYSTEMS GROUP REDONDO BEACH CALIF F/S 9/2
SEMANO4. (76) INTERPRETER DOCUMENTATION. VOLUME IV. IU)
NOV 77 E R ANDERSON. 0 M HEIMBIGNER F30602—76—C—0235

I SICLASSIFIED RADC—tR—77— 365~VOL—le IlL

I UI U!!!_
END
,It_ 0

3~~79



I ~J
______ 

I
~ ~~~

I ~ 
IItI~°

• HHI~
• utli ‘ 

.25 IIIII~•~ uhII~
~ RESOLU~ N 1~ ~ 1

~~~
- 

~~.. i!~~ ’~ • •.



rr~ 
•‘
—

~~~~~

- ‘-

~~~~~~~~~~~

.

~~
4 RADC-TR-77-365, Vol IV (of four)

Final Technical Report
November 1977

4 SEMANOL(76) INTERPRETER DOCUMENTATION

Eric R. Anderson
Dennis M. Heimbigner

TRW Defense and Space Systems Group

J U J

_ _  
U-

Approved for public release; distribution unlimited.

~1

D P C
~TTj)

F E fl ~ 
~~ 

t i
I - I

ROME AIR DEVELOPMENT CENTER U ~ L~i ~::
Air Force Systems Command
Griffiss Air Force Bose, New York 13441



This report has been reviewed by the RADC Information Office (01) and is
releasable to the National Technical Information Service (NTIS). At NTIS it
will be releasable to the general public, including foreign nations.

RADC—TR—77—365, Vol IV (of four) has been reviewed and approved f or
publication.

APPROVED:

JOHN ii. IVES, Captain, USAF
?roject Engineer

APPROVED : 
~~~~~~ 6~? ~~~~~~~~~~~~~~

ALAN R. BARNUN, Assistant Chief
Information Sciences Division

FOR ThE COMMANDER

JOHN P. HUSS
Acting Chief, Plans Off ice

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (ISIS) Crlf fiss AFB NY 13441. This will assist us in maintaining) a current mailing list.

Do not return this copy. Retain or destroy.



• 
--• •

~~~~~~~~~~~~~~
•
~~~~ 

-
~~~~~~~~~~

-.-
~~~~

- - , V
~~~~~~~~~~

MISSION
of H

Rome Air Development Center

R~4W plans and conducts research, exploratory and advanced
developse nt programs in command, control , and covxaunications
(C3) . activities, and in the C3 areas of inf ormation sciences
and intelligence. The principal techni cal mission areas
are coranunications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence
da ta collection and handling, inf ormation system technology,
ionospheri c propaga tion, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

~0~UTlO4
/

‘ I.’— ~~~~I -4
m

I
~
PP.

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



UNCLASSIF
’
~~~TP ~2- ~ 1~SECURIT Y CLASSIFI CATI ON OF THI S PA 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I~ LI~~JI~ I ~~~UM~~I~ I ~~ I I~JI’~ U BEFORE COMPLETING FORM~~~~~~~~~~~ w.Iu

~~~~

A

~~~~~~

AGr READ INSTRUC TIONS

ORT NUMBER 2. GOVT ACCESSION NO 3. RCCIPIENT S CATALOG NUMBEREj~i~[ ~~~-TR—77—365, Vol IV (of four) _____________________________
4. TITLE ( .d  SubtIU.) ~~~~~~~~~~~~~F_

R EP ORT S P E R I OD COVE R ED .

_ _ _ _ _  

(76) INTERPRETER J)OCUMENTATION. V~ % ~~~~~ Final ~~ chnical
,~~~
iQ~/______________________________________________ L-r•n . L.,.. o.u .., .... . ORT BER

____________________________________________ N/A
_ _ _ _ _  S. CONTRACT OR GRANT NUMBER(S)

10 ErIc RjAnderson
Dennis M

~LHe
imbigne

~~7 ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

9. PERFORMING ORGANIZATION NAM E AND ADDRESS ID. OGRAM ELEMENT. PROJECT . TA SK
A S WO RK UNIT NUMSERS

TRW Defense and Space Systems Group
One Space Park P. . 63728F /7 ~?• Red~ndo Beach CA 90278 J.O. 55 840
II. CONTROLLING OFFICE NAME AND ADDRESS ~ 1
Rome Air Development Center (ISIS) Nov 77 / ,1
Grlff iss AFB NY 13441 S J
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

32
14. MONITORING AGENCY NAME & ADDRESS(iI diff.r.nt from Controiii,.4 Oh io.) IS. SECURITY CLASS. (of thi s r.port)

UNCLASSIFIED
Same IS.. DECLASSIFICATION/DOWNGRADING

N/A SCHEDULE

4. DiSTRIBUTION STATEMENT (of  this R.p ort)

Approved for public release; distribution unlimited.

Il. DISTRIBUTION STATEMENT (of A. abstract .nt.r.d in Stock 20. ii diff.rsnt has, R.p onf)

Same

IS. SUPPLEMENTARY NOTES

RADC Project Engineer: Captain John N. Ives (ISIS)

‘9. KEY WORDS (Conhinu. on r.v.rl. aid. if n.c..wy ,d Id.ntify by block ns ,b r)
SEMANOL standardization
SEMANOL(76) language control
Semantics metalanguage processor
syntax interpreter

• nguage definition
20. A R A C T (Coniin~.. on r.v.re. aid. if nsc•aaary and id.nhif y by block ,. bør)

This report describes the internal organization of the SEMANOL(76) inter-
preter program, operational upon the Multics computer system , and provides
instructlor.3 on the use of the program. The SEMANOL(76) interpreter program is
a processor of metaprograms written in the SEMANOL(76) metalanguage (i.e., it
executes SEMANOL (76) metaprograms); these metaprograms are ordinarily formal
definitions of object programaing languages.

DD I ~~~~ 
1473 EDIT ION OF I NOV 41 IS OBSO L E T E  UNCLASSIFIED

SEC URITY CLASSIFICATION OF THIS PAGE (U9tsn D.i. Ent.,.d)



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

) UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(ITh~~. Daia Eni.r.d) 

-

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(1PP,.n 1)515 Ente,a d) 

. — - ~~~~~~~
-•——.-

~~~~~~
-

~~~ -- . . .—-~~~~~ —-— —--“.—-—-- , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—. 
~~~~~~~~~~~~~ ~~~~~~~~~~ 

~~~~~~~~~~~~~~ ~ .. ...—•-•.....—~
.. ..

~~
, ,

~~~~
. ——.— — 

~~~~~~~
• •.:•— .. .--.-.--.—..-

~~~~~~

ABSTRACT

The SEMANOL(76) Interpreter computer program
is a processor of metaprograms written in the
SEMANOL(76) metalanguage; that is, the Inter-
preter executes SEMANOL(76) statements. Since
SEMANOL(76) is a metalanguage for syntactic
and semantic specification, the metaprogranls
processed by the Interpreter are ordinarily
formal def initions of object programming
languages. The SEMANOL(76) Interpreter is
operational upon the Multics MR 5.0 system.

iii

—- . _
~~~_~:~~= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .,~~ ~~~ -, , • -



-. —. —.“, —,--.-  —. . . - ~~~~~~~~~~~~~~~~~~~~~ —— ~~ 
•— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

CONTENTS

Page
1. Program Name 1

2. Authorship  1

3. Support System Definition 1

4. Program Description 1

4.1 The Translator 2

4.2 The Executer 5

5. Logic Diagrams 14

6. Inputs 14

6.1 Translator Input 14

6.2 Executer Input 14

7. Output 14

7.1 Translator Outputs 14

7.2 Executer Outputs . . 14
I

8. Program Setup  18

9. Operating Instructions 18

9.1 Translator Coimsand 18

9.2 Executer Coumands  20

iv

________________________________________________________________ .- ~~~
——

~~- -
. -. .



1. Program Name

The name of this total computer program is the “SEMANOL(76) Interpreter”.
The SEMANOL(76) Interpreter is then made up of two major subprograms called
the lI Tr an slator Il and the “Executer” .

2. Authorship

The SEMANOL(76) Interpreter program was written by TRW Defense and Space
Systems Group under contract F30602—76—C—0238. The responsible programmers
were Eric R. Anderson, telephone (213) 536—3217, and Dennis N. Heimbigner,
telephone (213) 536—2914. The sponsoring agency was the Rome Air Develop—
inent Center; Captain John N. Ives was project engineer.

3. Support System Definitions

The SEMANOL(76) Interpreter runs on a HIS—6180 computer under control of
the Multics MR 5.0 operating system. Its core memory requirement depends
mainly upon the size of the SEMANOL (76) metalanguage program being run.
The Interpreter is normally operated in a timesharing mode, and thus
requires that file space be available on the permanent file disk unit.
The Interpreter does not use magnetic tape, card devices, nor the on—line
printer.

4. Program Description

The SEMANOL(76) Interpreter has been implemented through the use of two
major subprograms as observed earlier. The first subprogram, the Trans-
lator , reads a SEMANOL(76) program describing a prograimsing language and
converts it to a form (called SIL) which is readily usable by the next
subprogram, the Executer. The Executer loads and executes this SIL.
The Executer actually consists of a number of programs which communicate
through a COMMON data. base. Its commands include initialization and
running commands, breaking commands, syntactic component commands , tracing
commands , and miscellaneous commands. All of these features provide the
user with great flexibility when executing SEMANOL(76) metaprograms.

The SIL file used for communication between the Translator and Executer
is described with the Executer. It is an alphameric representation of
a list of operands and operators produced by processing the SEMANOL(76)
program. Note that these subprograms were written in Fortran, apart from
some PL/l routines which were needed for special functions (e.g., doing
half word load and stores and input/output). Each subprogram is described
separately in what follows , and indeed they are rather independent due to
the minimum interface resulting from the use of the SIL file. Please
note that the program listings are richly annotated and contain the full
details of program implementation.

1

~ 

~~~---- ~~~~~~. .



4.1 The Translator

The SEMANOL(76) Translator translates a SEMANOL(76) language bource
program into a SEMANOL interpreter language (SIL) object program. The
translator uses the recursive—descent method to analyze the syntax of the
source program. Recursive descent is a top—down, predictive recognition
process employing one recursive procedure for each of the syntax rules of
the source language. This method was chosen because it allows the con-
struction of a modular translator program; changes or additions to the
source language syntax are easily accommodated since there is little inter-
dependence among the recognition procedures.

The translator contains the following functional groups.

A. Initialization
B. Lexical analysis
C. Syntactic analysis (Parsing)
D. SIL code generation and output
E. Error handling and final report.

It is assumed that some command interface exists, which is operating
system dependent. This command interface opens the SENANOL(76) source
program, the SIL output program, and collects parameters which def ine
the translation options. This command interface invokes the major FORTRAN
subroutine, TRANS and passes the option parameters. TRANS invokes in
succession INIT , PARSE , and REPORT.

The major initialization procedure, INIT , is responsible for initializing
the translator data structures. The major data structures are:

A. String space
B. Keyword hash table
C. SIL output tokens
D. Symbol table
E. SIL list space

The lexical analyzer scans the source language program, one line at a time,
and converts each line to an equivalent array of tokens. A token is a
data structure which represents inf ormation about a substring of the input
line. In some cases, it may even contain the substring. Often the word
“token” is used to denote the substring as well as the data structure.
In particular, the tokens of the SEMANOL(76) Translator define:

A. Type , which is one of

1. keyword
2. delimiter
3. string constant
4. integer constant
5. bit—string constant
6. name
7. end—of—file
8. illegal—token

2



.—.‘•——.—.— ~~~~~~~~~~~~~~ 
.. ,._, .._.—.._ _— fl—.. - — .

I
B. Value , whose interpretation depends on the type

1. keyword — value is an index to the keyword string in the
string—space.

2. delimiter — value is not used.
3. string, integer, or bit—string constant — value is an index

to the text of the constant.
4. name — value is a symbol table index.
5. end—of—file, illegal — value is not used.

C. Mark, which is a character index into the source line containing
the first character of the token.

Blanks, comments, and ends—of—line are not themselves tokens. They only
delimit tokens in the input line. Because end—of—line is not part of any
token, no token may extend across lines, hence each line must contain an
integral number of tokens.

The SEMANOL(76) Translator uses a recursive descent parsing scheme. There
is no backtrack, but there is a one token look—ahead capability. Each
subroutine of the parser represents a non—terminal of the SEMANOL(76)
grammar. However , not all non—terminals are represented by subroutines.
Each subroutine is responsible for any necessary code generation relating
to its non—terminal. Some subroutines do not generate code, generally
because they are defined in terms of other non—terminals. In general,
the recursive descent subroutines define a compressed form of the
SEMANOL(76) grammar.

A typical parse subroutine attempts to form an instance of its defining
syntax rule by inputting tokens when it expects some terminal (such as a
keyword) and recursively calling a parse subroutine when it expects a non—
terminal. Failure to match an expected grammar item will result in a fail
return of that parse subroutine.

The ultimate aim of the Translator is to output the strings of SIL code
which represent the SEMANOL(76) source program being translated. Code
generation has two aspects. One aspect is the code which is generated
corresponding to a SEMANOL(76) construct. The second aspect is the pro-
cedures available to generate code.

As the source language statements are parsed, the corresponding SIL trans-
lation is generated by calls to the SIL generator procedures. These sub-
routines allow generation of lists of SIL code operations, constants,
labels , and strings. After each #DF or #PROC—DF is parsed, the lists of
SIL code are converted to strings and output to the SIL program file.

The generated SIL code is stored in a list structure. Because the SIL
gra ar order is different from SEMANOL(76) , procedures are available to
utilize multiple lists and to merge lists in an arbitrary order .

3 

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Whenever the Translator discovers ar error, one of four procedures is
called. Each procedure handles different kinds of errors.

LEXERR — lexical analysis errors
SYNERR — syntactic and semantic analysis errors
WERR — non—fatal warnings
CERR — errors resulting from failure of the translator, such as

table space overflow.

Each error routi~ie is passed an explanatory message. The error routine
c~sbines this message with other information. There are six pieces of
information output for each error.

1. SECTION — section of the SEMANOL(76) source program containing
the error

2. DF — the name of the syntactic or semantic #DF containing the
error.

3. LINE NUMBER - line number (beginning with one) of the line
containing the error.

4. T~~T — the text of the line containing the error.
5. MARKER — an indicator of the point in the line where the error

occurred.
6. ~~SSAGE — the error message as passed to the error routine.

If any of the first five pieces has already been output and has not
changed, then it is not output again. CERR never outputs the marker since
it is generally meaningless when the Translator fails.

After complet4.on of the parse and code generation for the whole input
source file, the Translator top level procedure calls REPORT. REPORT
produces more error information and summary statistics.

REPORT scans the final symbol table to detect and report four kinds of
errors.

1. The names of all syntactic and semantic #DF’s which contained
an error.

2. All global, syntactic, and semantic names which were referenced
but not defined.

3. The number of names with no defined type.
4. All global, syntactic, and semantic names which were def ined but

not referenced.

Finally , the report routine outputs various statistics, such as space used
and total lines read.

4 

~~~~~~. ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
..

~~~~~~ —.- ... - . -.—-- .__-



F.flX
~ ~~~ .rr ’. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~‘~~.~~•_••__ fl ._...__. *~_ -

4.2 The Executer

The Executer is that part of the SEMANOL(76) Interpreter which actually
executes SEMANOL(76) metaprograms. Each Executer command is a separate
program called from Multics command level. The programs communicate
through Fortran COMMON blocks which are initialized by the semanol command .
Note that the Translator does not reference these CO)Q4ON blocks; it only
communicates with the Executer commands tnrough SIL files.

The first step prior to using the Executer is to establish links to the
21 Executer commands. After this, the first command executed must be the
semanol command. The command

seinanol pathname

accomplishes several things:

1. It initializes the Executer and the COMMON blocks which provide
communication between the commands.

2. It loads all of the #DFs on the ASCII text segment given by
pathname (presumably this segment contains the SIt output of a
previous translate command).

As soon as the semanol command is given , the INIT subroutine is called.
The purpose of INIT is to initialize all of the variables and tables used
in COMMON by the Executer. These structures are described in the following
paragraphs in the order in which they are initialized:

1. The descriptor table is zeroed except for the ITL field of each
entry. The free entry list is constructed using this field as
a pointer.

2. The string array, ICHAR , is zeroed.
3. The main stack is zeroed.
4. The symbol table bucket array, IBUCK , is zeroed.
5. The SIL code array, ICODE , is zeroed.
6. Simple global variables are set to their initial values.

• 7. The global variables OP, VAR, SYN , VAL, and SIL are initialized
to contain their associated attribute type numbers.

8. The constant list is initialized.
9. The null sequence, #UNDEFINED , #TRUE , #FALSE , and the null string,

#B2, and #B8 are put on the constant list.
10. Op—code values are initialized by calling the INOP subroutine.
11. Finally, INIT returns.

While initialization is going on, many of the general utility routines are
called. A list of some of these utility routines and what they do follows:

1. The PL/l functions ITYPE, IHDA , IHD , ITL, ICT and IPTR are called
with a descriptor table or stack index and return the value of
the named field at that index.

5

~ 

.~~~~ -~~~~~~~~



- -fl— .—.-. -- -—fl-—— .-.

2. The PL/l subroutines STYPE, SHDA, SHD, Sm SCT, and SPTR do the
inverse; they store a value into the associated field of the
descriptor table or stack.

3. LITSTR. is used to create a literal string and push its descriptor
onto the stack.

4. LKPN looks up a name in the symbol table.
5. PUSH pushes a value onto the main stack .

These are just a few of the utilities used by the initialization, but they
give an idea of the kinds of operations required.

When initialization is complete , the SIL program is read from the segment
specified by the semanol command argument. The JSILSM routine parses
each SIL statement and converts it to internal form. Semantic definitions
and the special SIL statement (#CONTROL/SIL) corresponding to the
#CONTROL—COMMANDS se~~ion are stored in the ICODE array. Syntactic
definitions are stored as lists in the main descriptor table.

The run command is used to actually begin execution of a SEMANOL(76)
metaprogram. Assume that the semanol counnand has just been executed ,
initializing the COMMON areas and loading a SIL program . Then the run
command is used to start a test case.

INTERP is the main run subroutine. It calls the operator subroutines as
required by the SIL code. Since the flow of control is directed by
INTERP, which is in turn, directed by the SIL metaprogram, an understanding
of SIL is essential to an understanding of the Executer.

The external syntax of SIL is extremely simple (See Table I). Although
the SIL program is not stored internally in string form, it will be
assumed that the INTERP subroutine works directly on the string format
as this assumption elucidates the following discussion.

A SIL program consists of two kinds of statements, syntax statements and
semantic statements. An example of a syntax statement is

PROGRAM/SYN — ( ( SCAT/OP STMT/SYN ( KSTAR/OP
STMT/SYN KEND/OP ) ) ]

An example of a semantic statement is

PRINTA/SIL ( A 1 OI~DAT/OP MSTOP/OP 3
The difference between the two is that a syntax statement always has
statement—attribute ‘SYN’ and corresponds to a SEMANOL(76) syntactic #DF.
The syntax statements are not executed directly by INTERP, but instead
are used by the parsing subroutine JPARSE. In contrast, semantic state-
ments have statement—attribute ‘SIL’. They are read directly by INTERP
which calls the operator subroutines to execute them.

6 

-



The syntax statements will, be discuseed with the parser. Semantic state-
ments can be divided into two types as identified by their statement—name.
Corresondiug to the SEMANOL(76) program in the #CONTROL—COMMANDS section
is the statement with statement—name ‘#CONTROL ’. All other SIL semantic
statements correspond to semantic IDFs and #PROC—DFs . The subroutine
INTERP treats all of these routines the same once execution begins .

The elements within a SIL semantic statement list are normally processed
from left to right like a reverse Polish string of operators and operands .
Operands and results of operations are kept on a stack . The actions taken
when each kind of element is encountered are summarized below:

1. If a <name> < ‘/ ‘ > <‘SIL’,’SYN’> or <name> < ‘/ ‘ > c ’VAL ’> is
encountered , a pointer to the symbol table entry for the given
element is pushed onto the stack. Note that each <name> < ‘/ ‘ >
<attribute> has its own symbol table entry.

2. If <integer> < ‘/‘ > < ‘VAR’> is encountered, a pointer to the stack
entry for the parameter or local variable is pushed onto the stack.

3. If a constant is encountered, its value is pushed onto the stack.
4. If a <name> < ‘/ ‘ > < ‘OP’ > is encountered , the operator with the

given name is executed.
At this point , consider case 4 above. The INTERP subroutine handles each
operator by calling a subroutine whose name is the same as the operator
subroutine name . The operators which require operands take them from
the top of the stack. They often replace their operands with a result .

The operands for functional operators are descriptors for , or pointers to ,
the various SIL data types. The data types used are :

1. UND — #UNDEFINED 4. SEQ — A finite sequence
2. lINT — An integer 5. STR — A string
3. PRS — A parse tree 6. LOG — #TRUE or //FALSE

The stack contains pointers to symbol table entries and it also contains
special entries marking #DF and 1/PROC—OF calls.

Consider the following segment of SIL code:

1/I 1 #1 2 A/VAL CVS/OP STLFT/OP STRIT/OP A/VAL ASVAR/OP

Suppose the Executer encountered this code as an element of a routine.
It would first push the integers 1 and 2 onto the stack. When it en-
countered A/VAL it would push a pointer to the sylnbbl table entry for the
global A/VAL onto the stack. But then cvsIoP (convert to string operator)
would go to the A/VAL symbol table entry, get the value stored there,
convert it to a string, and push the string descriptor onto the stack in
place of the pointer to A/VAL. The top of the stack (at right) would now
contain

1, 2, ABC ’
given that A/VAL had a value of ‘ABC’. The Executer would then call the
STLFT subroutine which would replace 2 and ‘ABC ’ with ‘AB’, implementing
the SEMANOL(76) 1/LEFT 2 1/CHARACTERS—OF A. Next, the STRIT subrou tine would
be called to replace 1 and ‘AB ’ with ‘B’, implementing the SENANOL(76)
1/RIGHT 1 1/CHARACTERS—OF (1/LEFT 2 1/CHARACTERS—OF A). The top of the stack
would now contain

•..‘B’

:.,i:



~ ••—~‘r- --.-’w’-—-— ‘•-•—- ‘ .— -- .,— •_fl ,
~

•_•_•___
~~ ~_,_~~~~~~~~ ____ ~~~~~ _~~~~~ _ f l _  

~ f l •~•••••~~~ fl ~••~•~ - -

Next , another pointer to the A/VAL symbol table entry would be pushed on
the stack and the ASVAR subroutine would be called to store ‘B’ at the
A/VAL symbol table entry location. ASVAR deletes its arguments without
leaving anything on the stack, so now the stack would be as it was at the
start and the code would be complete.

Not all operators pass control in the sequential manner illustrated.
The operator BRANCH is an unconditional branching operator which is
immediately followed, as are other branching operators, with a relative
branch address. Consider the following (ludicrous) SIL code:

BRANCH/OP 2 MSTOP/OP MERRS/OP 3

When control reaches the BRANCH/OP, the relative branch address (2) is
processed. The relative count is from the 2 itself, and a positive number
indicates forward branching; hence, MERRS/OP is the next operator executed.
The MSTOP/OP is ékipped. Had the branch address been negative, the branch
would have been a backward one.

There are seven conditional branching operators and they are UDEC, BEMPTY ,
BFALSE, BINTSD, BINTST, BSETST, and BTRUE. In SIt code, each of them is
followed by a relative branch address; however, the branch is taken dppending
on some kind of test. If the branch is not taken, control next goes to the
point inmediately after the operator and its branch address. As an example,
consider the following STh code:

B/VAL CVS/OP ‘A’ PEQW/OP BTRUE/OP 2 MSTOP/OP...

Suppose control has come to the 1/VAL element. A pointer to the B/VAL
symbol table entry is pushed onto the stack. The CVS subroutine converts
this pointer to the string value of the variable B. ‘A’ is then pushed
onto the stack. Now the PEQW subroutine compares the top two stack entries
(assuming they are strings). If they are identical it replaces them with
1/TRUE and if not it replaces them with 1/FALSE. (This implements the
SEMANOL(76) argl #EQW arg2.) Now, the BTRUE operator is executed, If the
top stack entry is 1/TRUE it branches. Otherwise, BTRUE drops through and
control goes to the MSTOP operator.

Other operators can interrupt normal left to right processing within a
sublist. They include the following:

DCALL/OP - DCALL is used to implement a SEMANOL(76) #DF or #PROC-DF
call. When it is encountered in a code list, the top of
the stack contains (starting at the top) a pointer to
the symbol table entry containing the code for the #DF
to be called and the argument values themselu’.s. An
integer af ter the DCALL operator indicates the number of
arguments being passed.

RET/OP — — RET implements a SEMANOL(76) 1/OF return. When it is
encountered, control returns to the point at which the
last DCALL/OP was executed. The value returned is the
one at the top of the stack when RET/OP is executed.

8 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~- -



• .~~•,- t r  r. .. .--. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • ——- - -~~~~~~~~~~~~~~~ - .. ~~- - — -. •- --~~~~~~~,. ~~~~~~~~~~~~~~~ - - -

Now, an example of a SEMANOL(76) semantic #DF is given , showing how it is
represented as an SIL statement , and then following INTERP through its
interpretation. This will illustrate the #DF calling mechanism of the
Executer. The SEMANOL(76) #DF follows:

#DF LONGER(STRINGA,STRINGB)

—> STRINGA 1/IF #LENGTH(STRINGA) ) —  #LENGTH(STRINGB);
_> STRINGB 1/OTHERWISE 1/.

This #DF returns the longer of its two string arguments. It translates
into the Sit statement

LONGER/SIt —

(1) [ 2 2 2
(2) 1/VAR CySTS/OP ISLEN/OP CVI/OP 2/VAR
(3) CySTS/OP ISLEN/OP CVI/OP PLT/OP LNOT/OP
(4) BFALSE/OP 3 1/VAR RET/OP
(5) 2/VAR RET/OP 3
(Note that the parenthesized numbers are for reference purposes and do not
appear in the SIL code.) Suppose for the illustration that the arguments
are STRINGA— ’AR ’ and STRINGB—’ABC ’ when the #DF is called. The Executer
finds itself at line (1) in the above code. This line contains three
integers similar to those found at the head of the SIt code for any #DF.
The first integer indicates the defaul t values for trace, syntactic
component, and break flags. The second integer indicat~s how many parameters
the #DF expects (in this case 2). The third integer indicates how many
stack entries must be allocated to parameters and local variables for this
1/OF (again, in this case 2). Lines (2) and (3) indicate that the Executer
is to calculate and compare the lengths of the two strings. 1/VAR references
tha first parameter (STRINGA) and 2/VAR references the second parameter
(STRINGB). Since STRINGA is shorter, 1/FALSE will be left on the stack
sfter execution of lines (2) and (3). At the start of line (4) is
BFALSE/OP 3. Since this branches if false and 1/FALSE is encountered on

F top of the stack in this case, control skips over the rest of line (4) ,
directly to line (5). (The relative branch is 3 forward from the 3, or
right to the beginning of line (5).) Finally, line (5) indicates that the
value to be returned is STRINGB’ (referenced by 2/VAR), the longer string.
This value is returned as the value of the whole 1/OF as control is returned
to the point of the call.

As a different example , consider the following SIL code which calls the
parser to parse the string at S/VAt using as the root production the
syntax 1/OF with left—hand-side PRODUCTION:

s/VAt cvS/OP PRODUCTION/SYN 
STPRS/OP9



- , .,- .-rr c-—-——--’-’-. _,. ‘ 7r—~, - -~ ... ‘ _—~—.  - ‘ ‘~~~~~~ 
“r ’~~’ -. ..~~~~~~~~ — - 

--

The context—free gramear used by the parser is written using SEMANOL(76)
syntactic 1/DY’s. It is translated into SIL syntax statements as previously
stated. One SIL syntax statement corresponds to each SEMANOL(76) syntactic
1/DY. Note that the set of legal SIt syntax statements is different from the
set of SIL semantic statements (See Table 2). The parser uses the Jay
Earley parsing algorithm, modified for SEMANOL(76), to compute a parse
tree. The algorithm is documented in the listing and in several papers —

by Earley, so is not described here.

This concludes the discussion of INTERP which, indeed , passes control
directly or indirectly to almost every other Executer subroutina at some
time or other. The only thing that has not yet been mentioned is how
INTERP halts. This can happen in one of two ways:

1. INTERY encounters MSTOP/OP or MERRS/OP in the SIL program
control stream.

2. One of the operator subroutines detects an error in the SIt
metaprogram. In this case an appropriate error message is
printed at the terminal.

When either of these things happens, the Executer returns to l4ultics
command level and waits for a further command.

10 

-- -• • •~~- ----- -S-- - —- —
~~~-



~
-

~
---

~
—-- -- - -~~~-- -— ---- — -~~ —~~--

Table I. SIt Syntax for Semantic Statements

1/DY statement a> <statement—name> < ‘ I ’> <‘SIt’> (gap> <~~a~~> <gap>
<list> <gap> < ‘ ; ‘> 1/.

1/DY statement—name a> <name> 1/U (‘1/CONTROL’) 0.

1/DF list a> < ‘ 1( 3 ’ > <gap> <element> <%<<gap> <element>>> <gap>
<‘ i’> 0.

1/DY name z> <any SEMANOL.(76) name> 1/.

1/OF element => <integer> < ‘I ’> (‘VAR’>
=> <name> < ‘I ’ >  <‘SIL’>
=> <name> < ‘I ’ >  <‘SYN’>
=> <name> <‘I’> <‘OP’>
=> <name> < ‘I ’ >  <‘VA!,.’>
=> <constant>
=> <integer>
:> < ‘ — ‘> <integer> 1/.

1/OF constant :> <any legal SEMANOL .(76) string constant>
:> <‘1/B’> <gap> <any legal SEMANOL (76) bit—string constant>
=> <‘ 1/ I ’> <gap> <any lega l SEMANOL (76) integer constant>
~> <‘1/TRUE’>
=> <‘1/FALSE’>
=> <‘1/UNDEFINED’>
=> < ‘1/NULLSQ’> 1/.

#DF integer :> <1/DIGIT) <%<ODI GIT>> 0.

1/DY gap a> <% 1<<1/SPACE , ’(LF] ’>>> 1/.

11

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



- - --Yr --—~~
- t~~r— ~ rr~c--~~rWrr . ~ --~~-r r~~~~~~~ -~~~~ - . - -. —~~~~~~~ ---~r” rW -•

Table II. Sit Syntax for Syntactic Statements

1/DY syntax—statement a> <statement—name> < ‘I ’> <‘SYN’>
<gap> < ‘ a ’> <gap> <‘ ((3’> <gap> <syntax—list> <gap>
<‘3’> <gap> <‘;‘> 1/.
ODF statement—name :> name 1/.

1/DY syntax—list a> ease
a> scat 1/.

1/DY name a> <any SEMANOL(76) name> I.

1/DF case a> < ‘ C ’ > <gap> <‘CASE/OP’> <gap> <%1<<cat>
<gap>>> <‘)‘> 1/.

1/OF scat a> <‘(‘> <gap> <‘SCAT/OP’> <gap> <%1<<prim>
<gap>>> <‘) ‘> 1/.

#DF cat a> <‘(‘> <gap> <%1<<prim> <gap>>> <‘)‘> 1/.

1/OF prim a> set
a> union
a> setmin
a> katar
a> kstarl
a> scanop
a> nterm
a> strl it 1/.

1/DF set a> <‘(‘> <gap> <‘SET/OP’> <gap> <%1<<strlit>
<gap> <‘SETEND/OP’> <gap>>> <‘)‘> 0.

1/OF union a> <‘(‘> <gap> <‘UNION/OP’> <gap> <%1<<alt>
<gap>>> <‘)‘> 1/.

1/DF alt a> <‘(‘> <gap> <%1<<prim> <gap>>> <‘UNEND/OP’>
<gap> <‘)‘> 0.

1/OF setmin a> <‘(‘> <gap> <‘SETMIN/OP’> <gap> <%1<<prim>
<gap>>> <‘SMEND/OP’> <gap> <‘SMENDA/OP’> <gap> <%1<<strlit>
<gap>>> <‘)‘> 1/.

#DF kstar a> <‘(‘> <gap> < ‘KSTAR/OP’> <gap> <%1<<prim>
<gap>>> <‘KEND/OP’> <gap> <‘)‘> 0.

1/OF kstarl a> <‘(‘> <gap> <‘KSTARl/OP’> <gap> <%1<<prim>
<gap>>> <‘KEND/OP’> <gap> <‘)‘> 1/.

ODF scanop a> (‘DiGIT/OP’ , ‘SPACE/OP ’, ‘ALPHA/OP ’ , ‘ASCII/OP’,
‘GAP/OP ’ , ‘NIL/OP ’, ‘CAP/OP ’, ‘DNUM/OP’ , ‘LCASE/OP ’ , ‘NATNO/OP ’,
‘EMPT Y/OP’ ) # .

12

~~~~- - -~~~~~— --- -~~~~-
.
~~~~~~~ -—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- ~~~~~- -



~—- - ——-—~~~~- -- -~~~~- •-—~~~~~~~~~~~~~~~~~~~ .

1/OF nterm a> <name> <‘/SYN’> 1/.

- 

1/DF stru t a> <any SEMANOL (76) string literal> 1/.

1/DF gap a> <%1<<#SPACE ,’(LF)’>>> 0.

_: j



• ~~~~~~~~~~~~~~ ~“~‘ ‘~~~~~~~~~~~ -

5. Logic Diagrams

The logic diagrams are presented on the following pages. There is an
overall logic diagram and then one for each of the two major programs
which constitute the SEMANOL(76) Interpreter .

6. Inputs

Program inputs are discussed separately for the two programs. Further
discussion may be found in Section 9.

6.1 Translator Input

There is only one input file to the Translator, and that is an ASCII text
file which contains the SEMA~OL(76) source language program. The name of
this file is a command parameter.

6.2 Executer Input

One to three input files are required to run the Executer. They are ASCII
files like all other Multics text files. The first contains the SIL
version of the SEMANOL(76) metaprogram segment to be run. It is required
and its name is given in the semanol command. The second file is the
ASCII text of the test case in the object language. It is optional and
is referenced by the run command. The third file is the ASCII text of
the input for the test run. It is also optional and is referenced by the
run command.

7. Output

7.1 Translator Outputs

The major output of the Translator is the segment containing the generated
SIL code. The name of this segment is a control command parameter . Other
possible outputs are described in Section 9.1.

7.2 Executer Outputs

The main output file is the terminal. All object program output goes to
this file. Other messages which go to this file are:

1. Any error messages output by Fortran.
2. Any error messages output by the Executer.
3. Messages indicating when the Executer garbage collector (GGC)

and string compactor (SCOMP) are called and when they return.
4. 1/DY tracing messages when they are enabled.
5. A message “MSTOP CALLED” after each SEMANOL(76) program is run.

14 

.. _~~~~~~~~~~~~~~ 
. .

~~~~~~~~~~~ ..~~~~~~~~~~~~~~~~~ • .~~~ . •.



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_

_ _  

/ 
I

(I
~~ UI ~~~~~~~~~~~I d



_______ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~ - —~.. -—~~~
-
~~~---- —~ ------ .-•- P-----

COMMAND
INTERFACE 

[

TRt

] 

_ _ _

4, 
_ _ _  _ _ _  _ _ _ _ _ _ _ _

INIT 1 PARSE REPORT

LEX ICAL SIL 
E R

ANALYSIS GENERATION RRO

SEMANOL(70) (~~~SIL TERMINAL
SOURCE I ~~~~~~~

PROGRAM PROGRAM

LOGIC DIAGRAM 2: THE TRANSL ATOR PROGRAM

16

_ _ _  

~~•,-~~~~~~~~~~~~~~~~~~~~ --—— ~~~~~~~~~~~—-~~~~~ —-.-~~~~~~---



- ~~~ -,-- -~---. -~~——- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~,—,—— - -.

~~~~ - ---
~~

----
~~
‘—-

I
_ — 4

A
p

_ _ _ _ _ _ _ _ _ _  I
... ... .. I

_ _  

_  

{

_ _ _  

I

_ _ _ _ _ _  4 Dl

Z

I 
_ _  1*

I _

17

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~~~~~~_~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --
_
~--~ - . -- -

~

8. Program Setup

The Translator and Executer are run in Multics timesharing mode. Begin
with three ASCII segments containing (1) a SEMANOL(76) metaprogram, (2)
an object program in the language described by the metaprogram, and
(3) input data for the object program. Then proceed as in Section 9 below.

9. Operating Instructions

The SEMANOL(76) Interpreter program is a standard Multics job; therefore,
computer operators will follow accepted Multics procedures when the Inter—
pr~ter is active. However, an extensive set of user commands is available
as described in the following text.

9.1 Translator Command

A single command , the translate command, is provided with the SEMANOL(76)
Translator. This command invokes the Translator and so causes the trans-
lation of SEMANOL(76) metalanguage into SIL code. This command cannot be
called recursively. This command has the following format:

translate pathl path2 —control_args- where:

1. pathl is the pathname of a SEMANOL(76) source segment.
2. path2 is the pathnatne of a segment to contain the SIL

code output.
3. control_args can be chosen from the following list of control

arguments:

—check,—ck is used for syntactic and semantic checking of a
SEMANOL(76) program. No SIL code is produced.
The path2 argument need not be specified and is
ignored if present.

—brief,—bf causes the error summary information, normally
written into the error_output I/O switch, to be
suppressed.

—no_error , causes error messages, normally written into the
—noe error_output I/O switch, to be suppressed.

—xref pathx, generates primitive cross reference information in
—x the segment specified by pathx.

—stat causes statistical information about the source
program and translator resource usage to be output
into the error output I/O switch.

18



~ —~ v--y~ _ 
~~~~~~~~ • .  -~~~~~ -, - — — — -~ _ _ _

- - - - - -

—incremental allows incremental translation of part~’tl—inc SEMANOL(76) metaprograms . If no keyword is
present in the input segment, then it is assumed
to contain only semantic definitions. If no
input segment is specified, the default path
“[process_directory] aincremental_source” is used.
If no output segment is specified, the default
path “(process_directory] >incremental_sil” is
used. The symbol table segments are assumed to be
correct and are not reset. This means that use of
the incremental option must follow a non—incremental
tr3nslat ion performed since the last login or
newjroc.

—debug causes the debug program to be called as the last
—db action after a Translator error. This is a testing

feature, and is not intended for general use.

Invoking the translator without control arguments produces a SIL file,
error messages and an error summary.

Error Diagnostics

The SEMANOL(76) Translator outputs four classes of errors.

1. Warning only. Compilation continues without ill effect. The
messages in this class begin with the string “MJ*”.

2. Lexical errors. Compilation continues with the offending text
converted to a unique illegal token. The messages in this
class begin with the string “*L*”.

3. Syntactic and semantic errors. Compilation continues but no
SIL code will be generated for the #DF containing the error.
The messages in this class begin with the string “*S~”.

4. Compiler errors. Compilation is aborted . The output file is
in an undefined state. The messages in this class begin with
the string “*C*”.

Error messages are written into the error_output I/O switch as they
occur. An example of an error message follows.

1/CONTEXT-FREE-SYNTAX:

#DF: syntaxo

5
—> 1/.

+
*S* expected syntactic—expression after ~~>

The first line is the section in which the error occurred. It will be one
of the keywords:

19



-~~ ~~~~~~~ - --—--- -~~~~~ - -~~~~~~~

DECLARE-GLOBAL
DECLARE—SYNTACTIC—COMPONENT
CONTEXT-FREE-SYNTAX
SEMANTIC-DEFINITIONS
CONTROL-COMMANDS

The second line is the DF name in which the error occurred (e.g., syntaxo).
The third line is the line number of the source in which the error occurred.
The fourth line is the text of the line in which the error occurred. The
fifth line is an indication of where in the line the error was detected.
The sixth line is a descriptive error message. The first four lines are
not repeated for additional error messages referring to the same source
line.

9.2 Executer Commands

The Executer is that part of the SEMANOL(76) Interpreter which actually
executes SEMANOL(76) metaprograms. Each Executer command is a separate
program called from MULTICS command level. The programs communicate
through FORTRAN COMMON blocks which are initialized by the semanol command .
Note that the Translator is a separate program which communicates with the
Executer commands only through SIt files. Some sample Executer commands
follow:

semanol mini_basic. sil

run mini_basic.prog mini_basic.data

These commands assume (as do all of the examples that follow) that (1)
mini_basic.sil is an ASCII segment containing the Translator SIL output
from translating a SEMANOL(76) metaprogram description of the demonstration
language mini_basic, (2) mini_basic.prog is an ASCII segment containing a
sample mini_basic program, and (3) mini_basic.data is an ASCII segment
containing input data for the sample mini_basic program.

The first step prior to using the Executer is to establish links to the
21 Executer commands. After this, the first command executed must be the
semanol command. The command

semanol mini_basic . sil

accomplishes several things:

(1) It initializes the Executer and the COMMON blocks which provide
communication between the commands.

(2) It loads all of the #DFs on the ASCII text segment mini_basic.sil.
(Presumably this segment contains the SIL output of a previous
translate command.)

20

_



~ —
~~--‘--i-’r-—r -’ -- . -.-- - ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -- 

•

The semanol command may produce output lines of the form

scomp called
scomp returns

or

ggc called
ggc returns

indicating that the string compactor or garbage collector was called . These
routines are required to reclaim unused internal memory and take about
10 CPU seconds for the string compactor and 15 CPU seconds for the garbage
collector to run. The messages are printed so that the user will know when
his processing time is spent doing these overhead functions. Note that
once the semanol command is executed, it need not be executed again during
the current process.

— The run command is used to actually begin execution of a SEMANOL(76) meta—
program. Assume, for example, that the aemanol command has just been
executed , loading from mini_basic.sil the SIL corresponding to a SEMANOL(76)
description of mini_basic (a simple demonstration language). Assume, also,
that a nitni_basic test program exists on file nzini_basic.prog and that its
input exists on file niini_basic.data. Then the program can be run with
the specified input by typing

run mini_basic.prog mini_basic.data

The command can be executed again for an additional run, perhaps with
different data.

Suppose the following mini_basic program is on file mini_basic.prog:

10 INPUT I
20 IF I >— 2 THEN 50
25 GOSUB 60
30 LET I — I + 1
40 COTO 20
50 STOP
60 PRINT I
70 RETURN
80 END

(Each line is assumed to be followed by a line—feed.) And suppose 0
followed by a line—feed is on file mini_basic.data. Then the run output
will look like the following:

21 

~ --~~~--- - --~~---- -—-— -  -



— - — -
~

r—-
~

- — ———— - -~-r--- ---~ — - - -- - -  ~—,-----_~~-. .—, - ._ . _-,--. .• ----
~~,‘•-;.. ~~~~~~~~~~~~~~~~~~~~~~~ 

- - ‘‘~‘ -(~~~ - - 
—

run aini_basic.prog mini basic.data

0

1

mstop called

in #CONTROL at location 54: level 1

STOP

r...

The first line is typed by the user and initiates the run of the sample
mini_basic program and its data. The second line “?O” is output by the
SEMANOL(76) metaprogram to indicate that 0 has been input by the INPUT I
statement on line 10. The next two lines “0” and “1” are the output from
the PRINT I statement on line 60. The next three lines are output by
the Executer to indicate that a normal termination has occurred. The
last line is the NULTICS ready message.

As with the semanol command , there are other possible outputs. Again

scomp called
scomp returns

indicates that a string compaction is taking place and

ggc called
ggc returns

indicates that a garbage collection is taking place. Either of these
messages may occur during other commands, also. In the example run above,
a 1/STOP was executed as indicated by the message “mstop called.” In some
other run an error message will be printed out in the form

1/error executed
in error at location 12: level ~

The first line is the error message itself. The second line indicates (as
in the normal termination in the example above) the location of the error
(#1W name and relative code list location) and the level of the #DF stack
at the time of error. Here 1/error was executed in a #DF named error at
relative location 12 and #DF stack level 5. This is the standard form
for any error message occurring during execution.

22



There are 19 Executer commands other than semanol and run . All must
follow the semanol command and all are discussed in the following pages.
Some general Executer command concepts follow:

• Whatever applies to #DFs, also applies to #PROC—DFs. The term
“#DF” is used throughout.

• An error detected in a multiple argument command cancels processing
in later arguments.

• A loaded #DF is one whose corresponding SIL has been read by a pre-
vious semanol or load command. An unloaded #DF is one whose SIL
has not been so read.

• All commands terminate by printing STOP followed by the MULTICS
ready message.

• An error message, a string compaction message, or a garbage collection
message may appear at any time.

Break Commands

Associated with each loaded #DF is a break flag which may be on or off.
If the break flag is on for a given #DF, execution is suspended whenever
that #DF is called. The user may want to define some euxiliary #DFs which
print important intermediate results. Then, when a break occurs, he can
execute these #DFs using the executedf command. After a break has
occurred, the user can continue execution with the continue command.
A soft escape is available using the interrupt command. The available
break commands are described below.

brlst

brlst

The brlst command lists the names of all loaded #DFs which have
their break flag on.

No error can occur.

broff

broff dfnamel ... dfnameN

dfnamel the name of a loaded #DF

The broff command turns the break flag off for each #DF named
in its argument list.

An error is signalled if there is no argument or if one of the
arguments names an unloaded #DP.

23

p -- - - -~~~—~~ ~~- ~~-~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~



-~ 
~~~~

‘
~
—

~~
---- ~~~ -----_-.- --- -~ ,— ,- - -_ - “

~,—.—.—-——-——_—-_..— ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~

bron

bron dfnamel ... dfnameN

dfnaael the name of a loaded 1/DY

The bron command turns the break flag on for each #DF named
in its argument list.

An error is signalled if there is no argument or if one of the
arguments names an unloaded 1/OF.

continue

continue

The continue command continues (resumes) execution after a break
or error has suspended execution.

An error occurs if it is not legal to continue (e.g. because a
run command was never executed) .

interrupt

interrupt

The interrupt command sets a flag so that the Executer will break
at the next #DF called.

No error can occur , but the command should only be used as explained
below .

The use of the interrupt command is different from that of other commands.
It is used to simulate a sof t escape, i.e. a break set on the fly, from
a running metaprogram. Simply typing the MULTICS escape may leave the
Executer data structures in a compromised condition. The interrupt coninand
allows a break to occur at a safe place.

Assume that the run command has been typed and that a metaprogram is in
the midst of executing. To safely stop it the user should do the following:

(1) Hit the MULTICS escape key. This returns the user to MULTICS
command level and leaves the Executer in an unknown state.

(2) Type the interrupt command. This executer command sets an
interrupt flag in the COMMON communication area and then returns
to MULTICS command level.

24 

~~~~~~ -- -~~ --~~~~~~~~~~~ - —--~~- .~~-—-— -- - -—-~~- - -  ~~~~~~-~~~-- -—p— -—---



(3) Type the MULTICS start command. This allows the Executer to
continue at the escape point in (1) above . The Executer will
then break at the next 1/DY called , leaving the system uncompro.-
ised .

(4) At this point , the user can execute any command that he would
normally execute after a break , e.g. he can continue.

Following is a sample session at the terminal which illustrates the various
breaking commands. The user types the lines followed by a *,the computer
types all other lines. Note that “r.. .“ represents the MULTICS ready
message and [escape] represents a user—typed escape:

semanol mini_basic.sil *
STOP
r

brlst *
STOP
r ...
bron simple—successor *
STOP
r

brlst *

simple—successor
STOP
r

run mini_basic.prog aini_basic.data *

break at simple—successor
in statement—successor—of at location 75: level 2
STOP
r

continue *
break at simple—successor
in if—then—s uccessor at location 28: level 3
STOP
r . .
broff simple—successor *
STOP
r

brist *
STOP
r

25

- - - ~~~~~—- — - S. rn, - - -— ~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —--- ---- -_ -~ - -— - ---—— - - ‘-- -- _ -— - -



— ~~~~~~~~~~~~~~~~~~~~~~~ -urr, w rr - ~~~
_ _

~~
_

~
_

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ W”!~~~~~~~~~~~~ _,r,_ -~~~-~_ —— ~~~— - -‘~~- —-~— — p  - — —_-~~~~ ‘- .
~~~~~~ ‘ ‘

continue *
0
j escape] *
QUIT
r ...

interrupt *
r

start *
interrupt
break at sequence—of—executable—statements—in
in simple—successor at location 27: level 3
STOP
r ...

continue *
1
mstop called
in 1/CONTROL at location 54: level 1
STOP
r ...

Syntactic Component Commands

Associated with each loaded #DF is a syntactic component flag. In the
default case, this flag is on if the #DF is declared as a 1/SYNTACTIC—
COMPONENT in the SEMANOL(76) metaprogram, and the flag is off otherwise.
The user may wish to incrementally override these declarations for one
reason or another , and that is the purpose of the syntactic component
commands. These commands are described below.

sclst

scist

The sclst command lists the names of all loaded #DFs which have their
syntactic component flag on.

No error can occur.

scoff

scoff dfnamel ... dfnameN

dfnamel the name of a loaded #DF

The scoff command turns the syntactic component flag off for each
#DF named in its argument list.

An error occurs if there is no argument or if one of the arguments
names an unloaded 1/OF.

26 

~~~~~ - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



.—‘-,——-.--—,-,-.-—..—-— .-~ ——-. ,- --‘,-—.-—--—--.---, ——--~--——--— ----— ,— - --.—- -_— ‘.~——-.— — -,~——-— - .- -—.— -.- --- —- ---- -.- - ——.~~——. .—------.—-- — - ---

scon

scon dfnamel ... dfnameN

dfnamel the name of a loaded 1/DY

The scon command turns the syntactic component flag on for each 1/DY
named in its argument list.

An error is signalled if there is no argument or if one of the
arguments names an unloaded 1/DY.

Note that in most cases scon should be used only if a run command
(as opposed to a continue command) is to start execution.

Trace Commands

Associated with each loaded 1/DY is a trace flag which may have one of four
possible values. By judiciously setting trace flags on various #DFs, the
user can selectively trace desired portions of his SEMANOL(76) metaprogram’s
execution. The default trace flag value is trcneu. If all trace flags
are set to this value, no tracing occurs.

When a 1/DY is called, a determination Is made as to whether that #DF is to
be traced. If a 1/DY is traced, a message indicating its name and the level
number of the caLl is printed at both the call and the return. The returned
value is also printed at the return. The following table indicates whether
any given 1/DY is traced :

1/DY trace flag value Action

TRCON Trace the #DF , independent of its caller.

TRCOFY Do not trace the #DF , independent of its
caller.

TRCTEM Trace the 1/OF, independent of its caller.
(See TRCNEU for difference from TRCON)

TRCNEU Trace the 1/DY if its caller was traced and
its caller did not have trace flag value
TRCTEM . Otherwise , do not trace the 1/DY .

27



~ - -~ - -~~~~~~~~~~~~~~~~~~ -—-~ -—-~~~— 
_p___,_. , _ _.._, _,__,_ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 

----.----.--— -.-~- - - -

tracef lie

tracefile file. trace

file.trace optional pathname of a segment to receive the trace output

Trace output is normally (by default) sent to the terminal. The
tracefile command directs subsequent trace output to the specified
segment. If no segment is specified, subsequent trace outpu t is again
sent to the terminal. Note that to print a trace output segment, the
user must first type the NULTICS adjust_bit_count command, giving the
pathname of the segment as argument.

trist

trlst

The trlst command lists the names and local trace flag values of all
loaded 1/DYs which do not have local trace flag value trcneu. Possible
listed trace flag values are trcon, trcoff , and tretem.

No error can occur.

trneu

trneu dfnamel. . .dfnameN

dfnamel the name of a loaded 1/DY

The trneu command sets the local trace flag for each 1/DY named in
its argument list back to the default value trcneu.

An error occurs if there is no argument or if one of the arguments
names an unloaded #DF.

troff

troff dfnamel...dfnameN

dfnamel the name of a loaded #DF

The troff command sets the local trace flag for each 1/DY named in
its argument list to trcoff.

An error occurs if there is no argument or if one of the arguments
names an ‘..nloaded 1/OF.

28

~ 

-~~~~,- - - - - - --~~~~~ --,~~- - - -  - -



—-~~~~~~~~~~~~~~ -~~~~~~—~~~~~~ - ‘ ~~~~~~~~~~~~~~ ‘~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
‘
~~ 

- 
-
~~~~ 

-

tron

tron dfnamel...dfnameN

dfnamel the name of a loaded 1/DY

The tron command sets the local trace flag f or each 1/DY named in its
argument list to trcon.

An error occurs if there is no argument or if one of the arguments
names an unloaded 1/DY.

trtem

trtem dfnamel. . .dfnameN

dfnamel the name of a loaded #DF

The trtem command sets the trace flag for each 1/DY named in its
argument list to trctem.

An error occurs if there is no argument or if one of the arguments
names an unloaded 1/Dr.

Following is a sample session at the terminal which illustrates the various
tracing coninands. The user types the lines followed by a *, the computer
types all other lines. Note that “r...” represents the NULTICS ready
message. Also, note that 1/CONTROL is the name used to refer to the
1/CONTROL—COMMANDS section:

semenol mini_basic.sil *
STOP
r...

tron 1/CONTROL *
STOP
r...

trlst *
1/CONTROL trcon
STOP
r .. .

run mini_basic.prog mini_basic.data *
O call of 1/CONTROL
1 call of is—syntactically—valid

All bPs are traced in the above example.

29

--



p p . . -,.-~~-,- -~~~~~~~~~ p- ~~~~~~~~~~~~~ - . ~~‘ ‘p ~~~~~~ ~~~~~~~~~~ ‘“ “.r’ -p- ~~~~ - ‘ “f l  
~~~~~

‘ 

Miscellaneous Commands

The remaining commands described below are neither break commands, nor
syntactic componen t commands , nor trace commands. Note that this section
further expands on the seinanol and run commands introduced previously.

calst

calst

The calst command prints the current state of the 1/DY call stack, one
1/OF name per line. It is used after an error or break.

No error can be signalled by calst.

executedf

exedutedf dfname

dfname the name of a loaded 1/DY

The executedf command begins execution by calling the named #DF with
no arguments. A run command may have been previously executed, but
that is not required.

An error occurs if there is no argument or if the argument names an
unloaded 1/OF.

load

load file.sil

file.sil mandatory pathname of an ASCII segment containing SIL
output produced by the Translator

The load command loads a SIL file, making its #DYs ready to run. The
command can be used to incrementally add or update SIL code. The
last loaded version of any 1/DY is the one used when a new 1/DY call
occurs. Note that the break, trace, and syntactic component flags
f or any incrementally updated 1/OF are reset to their default values
(i.e. , break to off , trace to trcneu, and syntactic component to on
or off , depending on declarations in the translated SEMANOL(76)
metaprogram).

An error occurs if an attempt is made to load a 1/DY currently on the
#DF call stack (i.e., in execution). An error also occurs if the
load argument is missing.

30

_ --

~

‘-

~

-P-,-- - -

~ 

-—-—-,-
~~~~~—-. _ _ _



‘~
‘

~ , ‘r - - ‘ — - -. - ~~! - r -~~~~V.  ‘~~~~~~~~~~~~~~ ‘_ ~~ ‘ 
-

prcl

prcl dfnamel dfname2 ... dfnameN

dfnamel the name of a loaded #DF

The prcl command prints the internal form of the SIL code for each
1/DY named in its argument list. It is of use only to those familiar
with this internal form .

An error occurs if there is no argument or if one of the arguments
names an unloaded 1/DY.

reset

reset

The reset command resets the Executer to a state all ready to begin
execution. All #DF5 currently in execution are unstacked, the same
as in the run command. Execution does not begin. The purpose of
reset is to restore the Executer to a point at which a #DF previously
in execution can be reloaded using the load command .

No error can occur. I
run file.prog file.data

file.prog optional pathname of an ASCII segment containing the
string to be returned by #CIVEN—PROGRAN during this
execution

file.data optional pathname of an ASCII segment containing the
string to be returned by 1/INPUT during this execution

The run command first resets the Executer #DF call stack to level 0
(i.e., to empty) and assigns 1/UNDEFINED to all global variables and
names in the 1/ASSIGN—LATEST—VALUE space. It then begins running the
previously loaded 1/DY. The first code executed is that corresponding
to the 1/CONTROL—COMMANDS section.

Many different execution errors can occur as explained previously.
Also, an error will be signalled if either optional pathname specifies
a non—accessible file.

31



— —‘-, -- - 
_-~~*---._-v--_---- 

~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~
--
~~ 

_p__ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— —.  --- —-,--, 

‘ - -

semanol

semanol file.sil

file.sil optional pathname of an ASCII segment containing SIL output
produced by the Translator

The semanol command initalizes the Executer and its associated COMMON
areas. It must be executed prior to the execution of any other
Executer command. Optionally, the command loads a SIL file, making
its #DF5 ready to run.

An error occurs if the optional pathname specifies a non—accessible
or empty f ile, or if the contents of the specified file contains
illegal SIL.

32

_______________- —— ~~~~~~~~~~‘P p ~~~~~~~~~~~~~~ —~~P~.— — -— — —~~ ~~~~~~~~~~~ —


